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ABSTRACT
We propose an integrated theoretical framework, grounded in pos-
sibility theory, to account for all the aspects involved in represent-
ing and changing beliefs, representing and generating justified de-
sires, and selecting goals based on current and uncertain beliefs
about the world, and the preferences of the agent.

Beliefs and desires of a cognitive agent are represented as (two
distinct) possibility distributions. This is the original part of the
proposed framework in the sense that there does not really exist a
full-fledged possibilistic approach to BDI. In the proposed frame-
work: (i) the possibility distribution representing the qualitative
utilities associated with desires are the result of a rule-based delib-
erative process, that is, they depend on the mental state of the agent
and are not given a priori; and (ii) the criteria for choosing goals
take into account not only the fact that goals must be consistent in
the logical sense, but also in the cognitive sense.

Categories and Subject Descriptors
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—
Nonmonotonic reasoning and belief revision

General Terms
Theory

Keywords
Beliefs, desires and goals, fuzzy logic, possibility theory

1. INTRODUCTION AND RELATED WORK
There is a consensus among researchers that the generation of

the goals to be adopted by an agent depends on its mental state [2,
7, 10, 12]. It can be the result of an explicit external request that is
accepted by the agent, e.g., [26]; or a consequence of the agent’s
mental attitudes, e.g., [10]. Instead, the choice of the best set of
goals to be adopted (pursued) depends also on the consistency (or
feasibility) of such goals. A common assumption in the agent the-
ory literature states that “achievement goals that are believed to be
impossible to achieve should be dropped” [11, 25].

There are two directions followed by the researchers to define
desire/goal consistency. The one that considers the steps of both
goal generation and adoption as a whole, and the one that considers
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them separately. In the former case, the evaluation of the consis-
tency of a desire set takes the cognitive components into account,
but can lead to a goal set that is not the (or one among the) maximal
consistent set. In the latter case, the evaluation of consistency does
not take the cognitive components of the agent into account (logi-
cal consistency). This can lead the agent to choose sets of desires
which are logically consistent but inconsistent from the cognitive
point of view.

We propose a possibilistic approach in which the generation and
the adoption parts are considered separately and propose a new and
possibilistic-based definition of desire/goal consistency which in-
corporates the two points of view. Using a possibilistic framework
to represent beliefs and desires allows one to also represent par-
tially sure beliefs and partiallly desirable world states. The origi-
nality of what we are proposing with respect to the existing works
is the use possibility distributions to represent beliefs and desires in
BDI agents:

(i) the possibility distribution representing the qualitative utili-
ties associated to desires are the result of a deliberative pro-
cess, that is, it depends on the mental state of the agent;

(ii) we consider that desires may be inconsistent and propose a
way to calculate the degree of (logical and cognitive) consis-
tency of the agent’s desires;

(iii) we make an explicit distinction between goals and desires;

(iv) with respect to, e.g., [7, 13], we extend the representation of
desires to arbitrary formulas and not just literals.

The first step was the choice of the most suitable representation
for beliefs. Recently, we have proposed an approach considering
that belief is a matter of degree and, as a consequence, also goals
are adopted (desired) to some extent [12,13]. In such approach, we
basically dealt with a classical (Boolean) propositional language,
but allowed for the definition of graded beliefs and, for that pur-
pose, we defined a sort of truth-functional fuzzy semantics for be-
liefs (and desires). Here, we propose a possibilistic approach which
is more suitable to representing uncertain beliefs. Indeed, there is a
main difference between truth degrees and degrees of uncertainty,
made clear by the following example, due to Bezdek and Pal [19].
In terms of binary truth-values, a bottle is viewed as full or empty.
If one accounts for the quantity of liquid in the bottle, one may say
the bottle is “half full” for instance. In that case, “full” can be seen
as a fuzzy predicate and the degrees of truth of “The bottle is full”
reflects the amount of liquid in the bottle. The situation is quite
different when expressing our ignorance about whether the bottle
is full or empty (given that we know only one of the two situations
is the true one). This reflects our degree of evidence to the fact that
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the bottle is full or empty. To say that the possibility (or the prob-
ability) that the bottle is full is 1/2 does not mean that the bottle is
half full.

We propose to adopt the representation of beliefs as uncertain, in
the sense that, given a piece of information, and given the agent’s
current knowledge, the agent can assert how sure it is about that
piece of information. The agent’s beliefs are then represented thanks
to a possibility distribution and we adapt the belief conditioning
operator proposed by Dubois and Prade [18], and propose an ex-
tension of the AGM-like revision postulates proposed in [18] to the
case of partially sure new information.

The second step was the choice of a suitable representation for
desires. A consequence of representing beliefs as a matter of degree
is that desires also have to be considered as such.

In [22, 23] the authors start from Boutilier’s preference-based
handling of conditional desires [6,27] (if a then ideally b) for mod-
eling preferences and suggest to view such conditional desires as
constraints on utility functions. The violation of such contraints
induces a loss of utility, while their satisfaction induces a gain of
utility. Dastani et al. [15], who compare BDI systems to Qualitative
Decision Theory, made an analysis about the profit derived from
the synergy of both systems. They proposed a decision-theoretic
approach where losses and gains are associated with rules. While
our approach is purely qualitative and possibilistic, in the sense that
only the ordering between positive desires is considered, the above
mentioned approaches are based on additive utilities.

There are several other approaches which deal with and repre-
sent graded desires [3, 5, 9, 24]. In particular, there are recent in-
teresting works which have pointed out the importance of making
a distinction between positive and negative preferences. Negative
preferences correspond to what is rejected, considered unaccept-
able, while positive preferences correspond to what is desired. But
what is tolerated (i.e., not rejected) is not necessarily desired. Such
bipolar preferences can be represented in possibilistic logic [14] by
two separate sets of formulas: prioritized constraints, which de-
scribe what is more or less tolerated, and weighted positive pref-
erences, expressing what is particularly desirable. In none of these
approaches, the degrees of satisfaction and tolerance of preferences
are supposed to derive from the cognitive aspects of the agent. Most
approaches assume that they are given a priori.

The paper is organized as follows: Section 2 provides an over-
all description of the proposed framework, whose details are given
in the rest of the paper; Section 3 provides essential background
on fuzzy sets and possibility theory, and introduces a possibilistic
representation of beliefs, desires, and the mental state of an agent.
After these preliminaries, Section 4 discusses how beliefs enter-
tained by an agent may change in response to the receipt of new
information from the environment; Section 5 models the delibera-
tion mechanisms whereby an agent dynamically generates its de-
sires based on its mental state, while Section 6 describes how goals
are selected from the agent desires in a rational way. Section 7
concludes.

2. OVERVIEW OF THE FRAMEWORK
A schematic illustration of the proposed framework is provided

in Figure 1 as a handy navigation tool.
The framework may be classified as a BDI model of agency. The

three distinct layers of beliefs, desires, and intentions are boxed in
gray, as is the perimeter of the agent.

The agent interacts with the world by receiving information φ
from one or more sources, and by performing actions. Further-
more, the agent is “programmed” by its user (or owner) by inserting
one or more desire-generation rules r into rule-base RJ .

Figure 1: A schematic illustration of the proposed BDI frame-
work. The meaning of the symbols is explained in the text.

The agent has an internal mental state S that is completely de-
scribed by a possibility distribution π, representing beliefs, and by
a set of desire-generation rules RJ . Possibility distribution π is dy-
namic and changes as new information φ is received from a source.
A trust module, whose details are not covered in this paper, assigns
a trust degree τ to each source. A belief change operator ∗ changes
π in light of new information φ while taking the degree τ to which
the source of φ is trusted into account. Possibility distribution π
induces an explicit representation B of the agent’s beliefs as a ne-
cessity measure N .

The set J of the agent’s justified desires is generated dynami-
cally through a deliberation process which applies the rules in R to
the current beliefs and desires to produce a possibility distribution
of qualitative utility u, which induces J as a guaranteed possibility
Δ.

Finally, the agent rationally elects its goals G∗ from the justified
desires J as the most desirable of the possible sets of justified de-
sires, according to a possibility measure Π induced by π. The agent
then plans its actions to achieve the elected goals G∗ by means of a
planner module, whose discussion lies outside of the scope of this
paper.

3. POSSIBILISTIC REPRESENTATION
In this section, we introduce a possibilistic representation of be-

liefs and desires, and define the mental state of an agent. Essential
background and definitions on fuzzy set theory and possibility the-
ory are given.

3.1 Fuzzy Sets
Fuzzy sets [28] are a generalization of classical (crisp) sets ob-

tained by replacing the characteristic function of a set A, χA, which
takes up values in {0, 1} (χA(x) = 1 iff x ∈ A, χA(x) = 0 other-
wise) with a membership function μA, which can take up any value
in [0, 1]. The value μA(x) or, more simply, A(x) is the member-
ship degree of element x in A, i.e., the degree to which x belongs
in A.

A fuzzy set is completely defined by its membership function.
Therefore, it is useful to define a few terms describing various fea-
tures of this function, summarized in Figure 2. Given a fuzzy set
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A, its core is the (conventional) set of all elements x such that
A(x) = 1; its support, supp(A), is the set of all x such that
A(x) > 0. A fuzzy set is normal if its core is nonempty. The set
of all elements x of A such that A(x) ≥ α, for a given α ∈ (0, 1],
is called the α-cut of A, denoted Aα.

Figure 2: Core, support, and α-cuts of a set A of the real line.

The usual set-theoretic operations of union, intersection, and com-
plement can be defined as a generalization of their counterparts on
classical sets by introducing two families of operators, called tri-
angular norms and triangular co-norms. In practice, it is usual to
employ the min norm for intersection and the max co-norm for
union. Given two fuzzy sets A and B, and an element x,

(A ∪ B)(x) = max{A(x), B(x)}; (1)

(A ∩ B)(x) = min{A(x), B(x)}; (2)

Ā(x) = 1 − A(x). (3)

Finally, given two fuzzy sets A and B, A ⊆ B if and only if, for
all element x, A(x) ≤ B(x).

3.2 Possibility Theory
The membership function of a fuzzy set describes the more or

less possible and mutually exclusive values of one (or more) vari-
able(s). Such a function can then be seen as a possibility distribu-
tion [29]. Indeed, if F designates the fuzzy set of possible values
of a variable X , πX = μF is called the possibility distribution
associated to X . The identity μF (v) = πX(v) means that the
membership degree of v to F is equal to the possibility degree of
X being equal to v when all we know about X is that its value is
in F . A possibility distribution for which there exists a completely
possible value (∃v0; π(v0) = 1) is said to be normalized.

DEFINITION 1 (POSSIBILITY AND NECESSITY MEASURES).
A possibility distribution π induces a possibility measure and its
dual necessity measure, denoted by Π and N respectively. Both
measures apply to a crisp set A and are defined as follows:

Π(A) = max
s∈A

π(s); (4)

N(A) = 1 − Π(Ā) = min
s∈Ā

{1 − π(s)}. (5)

In words, the possibility measure of set A corresponds to the
greatest of the possibilities associated to its elements; conversely,
the necessity measure of A is equivalent to the impossibility of its
complement Ā.

Another interesting measure that can be defined based on a pos-
sibility distribution is guaranteed possibility [20].

DEFINITION 2 (GUARANTEED POSSIBILITY MEASURE).
Given a possibility distribution π, a guaranteed possibility mea-
sure, noted Δ, is defined as:

Δ(A) = min
s∈A

π(s); (6)

In words, the guaranteed possibility measure estimates to what
extent all the values in A are actually possible according to what is
known, i.e., any value in A is at least possible at degree Δ(A).

A few properties of possibility, necessity, and guaranteed possi-
bility measures induced by a normalized possibility distribution on
a finite universe of discourse Ω are the following. For all subsets
A, B ⊆ Ω:

1. Π(A ∪ B) = max{Π(A), Π(B)};

2. Π(∅) = N(∅) = 0, Π(Ω) = N(Ω) = 1;

3. N(A ∩ B) = min{N(A), N(B)};

4. Π(A) = 1 − N(Ā) (duality);

5. N(A) ≤ Π(A);

6. N(A) > 0 implies Π(A) = 1;

7. Π(A) < 1 implies N(A) = 0;

8. Δ(A) ≤ Π(A).

A consequence of these propoerties is that max{Π(A), Π(Ā)} =
1. In case of complete ignorance on A, Π(A) = Π(Ā) = 1.

3.3 Negative and Positive Information
A relatively recent work on cognitive psichology [8] pointed out

that negative information and positive information are processed
separately in the brain. This strengthens the idea that negative and
positive information require different representation models and
different reasoning techniques. Here, like for example in [20], by
negative information we mean information that restricts the num-
ber of situations deemed possible, by just keeping what is possible
because not ruled out by the available knowledge. This is in line
with the classical view in logic according to which each new piece
of information declares some worlds impossible. Positive informa-
tion instead, leads to a disjunctive accumulation of information in
the sense that the more one is informed (with positive information
or facts), the larger the range of worlds which are guaranteed to be
possible.

When modeling knowledge (or beliefs), such a bipolar view is
suited to making a distinction between what is possible because it
is consistent with the available information, and what is possible
for sure because observed by facts. Let us consider the following
example about bipolar knowledge proposed by Dubois and Prade
in [20]. Assume for instance one has some information about the
opening hours and the entrance fee of a museum M . We may know
that museum M is open from 2pm to 4pm, and certainly closed at
night (from 9pm to 9am). Note that nothing forbids museum M
to be open in the morning although there is no positive evidence
supporting it. Its entrance fee is neither less than 2 euros nor more
than 8 euros (following legal regulations), prices between 4 and
5 euros are really possible (they are prices actually proposed by
similar museums).

When modeling desires (or preferences), the bipolar view is suited
to distinguishing between positive desires (positive preferences)
which are associated to satifaction degrees and negative prefer-
ences which reflect what is not rejected as unsatisfactory and are
associated to tolerance degrees. For example, a teacher can express
his preferences about the days of the week in which he would pre-
fer to teach a class. He can express two kind of preferences. The
positive ones with a list of preferred days, each one associated to
a satisfaction degree; and the list of negative preferences with the
days which are unacceptable for him to a certain degree of toler-
ance.
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Here, we adopt the representation of beliefs proposed in [18]
but, besides, we propose a belief updating operator which is an
adaptation of Dubois and Prade’s belief conditioning operator for
belief revision in light of the acquisition of partially sure negative
information.

For sake of simplicity, we just consider the positive side of de-
sires. Therefore, our agent just generates desires which it would
like to be satisfied.

3.4 Language and Interpretations
Information manipulated by a cognitive agent must be repre-

sented symbolically. To develop our theoretical framework, we
adopt perhaps the simplest symbolic representation, in the form of
a classical propositional language.

DEFINITION 3 (LANGUAGE). Let A be a finite1 set of atomic
propositions and let L be the propositional language such that A∪
{�,⊥} ⊆ L, and, ∀φ, ψ ∈ L, ¬φ ∈ L, φ ∧ ψ ∈ L, φ ∨ ψ ∈ L.

As usual, one may define additional logical connectives and con-
sider them as useful shorthands for combinations of connectives of
L, e.g., φ ⊃ ψ ≡ ¬φ ∨ ψ.

We will denote by Ω = {0, 1}A the set of all interpretations
on A. An interpretation I ∈ Ω is a function I : A → {0, 1}
assigning a truth value pI to every atomic proposition p ∈ A and,
by extension, a truth value φI to all formulas φ ∈ L.

DEFINITION 4. The notation [φ] denotes the set of all models
(namely, interpretations satisfying φ) of a formula φ ∈ L:

[φ] = {I ∈ Ω : I |= φ}.
Likewise, if S ⊆ L is a set of formulas,

[S] = {I ∈ Ω : ∀φ ∈ S, I |= φ} =
�

φ∈S

[φ].

3.5 Representing Beliefs and Desires
A possibility distribution π can represent a complete preorder on

the set of possible interpretations I ∈ Ω. This is the reason why, in-
tuitively, at a semantical level, a possibility distribution can either
represent the available knowledge (or beliefs) of an agent, or its
preferences (or desires). When representing knowledge, π(I) acts
as a restriction on possible interpretations and represents the degree
of compatibility of interpretation I with the available knowledge
about the real world. When representing desires, π(I) corresponds
to the degree to which the agent would be satisfied (i.e., content,
pleased, demanding no more, considering it enough, not in the log-
ical sense) if the world were the one described by interpretation I.
To avoid confusion, in this latter case, we will write u(I) and call
u a qualitative utility, because this best reflects its intended mean-
ing and purpose; of course, it will be understood that, formally,
u(·) is a possibility distribution. By convention, π(I) = 1 means
that it is totally possible for I to be the real world. In the case
of desires, u(I) = 1 means that I is fully satisfactory. Instead,
0 < π(I) < 1 (or 0 < u(I) < 1) means that I is only somewhat
possible (or satisfactory), while π(I) = 0 (or u(I) = 0) means
that I is certainly not the real world (or not especially satisfactory
in case of preferences, though this by no way means rejection). In-
terpretation I is more possible (preferred) than interpretation I′

when π(I) > π(I′) (u(I) > u(I′)).

1Like in [4], we adopt the restriction to the finite case in order to
use standard definitions of possibilistic logic. Extensions of possi-
bilistic logic to the infinite case are discussed for example in [16].

We represent the beliefs and desires of a cognitive agent thanks
to two different possibility distributions π and u respectively. Thus,
a normalized possibility distribution π means that there exists at
least one possible situation which is consistent with the available
knowledge. All these considerations are in line with what proposed
in [3, 20].

In the following, the formal representation of beliefs and desires
is proposed.

3.5.1 Representing Desires
Following a common assumption in the agent theory literature, in

our framework the desires of an agent depend on its beliefs. There-
fore, while we propose that desires be represented by means of a
possibility distribution of qualitative utility, one must understand
that such a distribution is just an epiphenomenon of an underlying,
more primitive mechanism which determines how desires arise. A
suitable description of such mechanism may be given in terms of
desire-generation rules.

DEFINITION 5 (DESIRE-GENERATION RULE). A desire-gen-
eration rule R is an expression of the form βR, ψR ⇒+

D φ2, where
βR, ψR, φ ∈ L. The unconditional counterpart of this rule is
α ⇒+

D φ, with α ∈ (0, 1].

The intended meaning of a conditional desire-generation rule is:
“an agent desires every world in which φ is true at least as much as
it believes βR and desires ψR”, or, put in terms of qualitative utility,
“the qualitative utility attached by the agent to every world satisfy-
ing φ is greater than, or equal to, the degree to which it believes βR

and desires ψR”. The intended meaning of an unconditional rule is
that the qualitative utility of every world I |= φ is at least α for the
agent.

Given a desire-generation rule R, we shall denote rhs(R) the
formula on the right-hand side of R.

3.5.2 Representing Graded Beliefs
As convincingly argued by Dubois and Prade [20], a belief, which

is a component of an agent’s cognitive state, can be regarded as a
necessity degree induced by a normalized possibility distribution π
on the possible worlds I:

π : Ω → [0, 1]; (7)

where π(I) is the possibility degree of interpretation I. It repre-
sents the plausibility order of the possible world situation repre-
sented by interpretation I.

DEFINITION 6 (GRADED BELIEF). Let N be the necessity mea-
sure induced by π, and φ be a formula. The degree to which the
agent believes φ is given by:

B(φ) = N([φ]) = 1 − max
I�|=φ

{π(I)}. (8)

Straightforward consequences of the properties of possibility and
necessity measures are that B(φ) > 0 ⇒ B(¬φ) = 0, this means
that if the agent somehow believes φ then it cannot believe ¬φ at
all; and

B(�) = 1, (9)

B(⊥) = 0, (10)

B(φ ∧ ψ) = min{B(φ),B(ψ)}, (11)

B(φ ∨ ψ) ≥ max{B(φ),B(ψ)}. (12)

2Note that the implication used to define a desire-generation rule is
not the material implication.
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3.6 Mental State
We now have the elements to define the mental state of an agent,

which consists of its beliefs and the rules defining the deliberation
mechanism whereby desires are generated based on beliefs.

DEFINITION 7 (MENTAL STATE). The state of an agent is com-
pletely described by a pair S = 〈π,RJ〉, where

• π is a possibility distribution which induces the agent’s be-
liefs B;

• RJ is a set of desire-generation rules which, together with
B, induce a qualitative utility assignment u.

4. BELIEFS
In this section, we propose a belief change operator which al-

lows to update the possibility distribution π in light of new trusted
negative information when the hypothesis of purely inertial world
made in [18] is weakened, in that an agent may safely assume the
world has not change until it receives evidence to the contrary and,
in that case, the change is specific to the evidence received.

Here, we suppose that a source of information may be considered
trusted to a certain extent. This means that its membership degree
to the fuzzy set of trusted sources is τ ∈ [0, 1]. Let φ ∈ L be
incoming information from a source trusted to degree τ . The belief
change operator is defined as follows:

DEFINITION 8 (BELIEF CHANGE OPERATOR). The possibil-
ity distribution π′ which induces the new belief set B′ after receiv-
ing information φ is computed from possibility distribution π rel-
evant to the previous belief set B (B′ = B ∗ τ

φ
, π′ = π ∗ τ

φ
) as

follows: for all interpretation I,

π′(I) =

��
�

π(I)

Π([φ])
, if I |= φ and B(¬φ) < 1;

1, if I |= φ and B(¬φ) = 1;
min{π(I), (1 − τ)}, if I �|= φ.

(13)

The condition B(¬φ) < 1 in Equation 13 is equivalent to ∃I′ :
I′ |= φ ⇒ π(I′) > 0, i.e., Π([φ]) > 0; likewise, the condition
B(¬φ) = 1 is equivalent to Π([φ]) = 0, which implies π(I) = 0
∀I |= φ. Therefore, the second case in Equation 13 provides for
the revision of beliefs that are in contradiction with new informa-
tion φ. We can notice that in general, the operator treats new infor-
mation φ in the negative sense: being told φ denies the possibility
of world situations where φ is false (third case of Equation 13).
The possibility of world situations where φ is true may only in-
crease due to the first case in equation 13 or revision (second case
of Equation 13). We can notice that in [18], if a sure informa-
tion contradicts an existing proposition that is fully believed then
it leads to inconsistency. Revising with our operator instead, leads
the agent to believe the more recent information and give up the
oldest to restore consistency. The reason is that we suppose that the
agent is not in a purely static context. Therefore, as convincingly
pointed out by Delgrande and colleagues in [17], there is reason for
giving priority to more recent items.

In the following, we show that the above belief change operator
obeys the AGM belief revision rationality postulates. After recall-
ing that the expansion of a crisp set of formulas K with a formula
φ ∈ L is K +φ = {ψ : K∪{φ} � ψ}, let us define the expansion
of a fuzzy set of formulas B with a formula φ ∈ L from a source
trusted to degree τ , for all ψ ∈ L, as�

B +
τ

φ

�
(ψ) = max{α : (B ∪ {(φ, τ)})α � ψ}, (14)

where (B ∪ {(φ, τ)})α is the crisp set corresponding to the α-cut
of the fuzzy set B ∪ {(φ, τ)}. In terms of possibility distribution,
this corresponds to�

π +
τ

φ

�
(I) = min{π(I), φI + (1 − φI)(1 − τ)}. (15)

The AGM revision rationality postulates K∗1–K∗8 [21] may be
reformulated as follows in a possibilistic setting (with some slight
but important differences from [18], which mostly have to do with
the fact that we deal here with partially trusted new information),
where π is a normalized possibility distribution inducing B, φ ∈ L
is a formula and π′ = π ∗ τ

φ
is the possibility distribution inducing

B′ = B ∗ τ
φ

:

B∗1 π′ is a normalized possibility distribution.

B∗2 B′(φ) ≥ τ (priority to new information).

B∗3 B′ ⊆ B + τ
φ

, or, equivalently, for all I ∈ Ω, π′(I) ≥
min{π(I), φI + (1 − φI)(1 − τ)}, i.e., revising does not
yield more specific results than expanding.

B∗4 If B(¬φ) = 0, then B + τ
φ

⊆ B′, or, equivalently, for all

I ∈ Ω, π′(I) ≤ min{π(I), φI + (1 − φI)(1 − τ)}, i.e., if
φ is not rejected by π, revision reduces to expansion;

B∗5 π′(I) ≤ 1 − τ for all I ∈ Ω if and only if φ ≡ ⊥.

B∗6 If φ ≡ ψ, then B ∗ τ
φ

= B ∗ τ
ψ

.

B∗7 B ∗ τ
φ∧ψ

⊆ B′ + τ
ψ

, or, equivalently, for all I ∈ Ω, (π ∗
τ

φ∧ψ
)(I) ≥ min{π′(I), ψI + (1 − ψI)(1 − τ)}.

B∗8 If Δ([φ∧¬ψ]) ≥ 1−τ , then, B′ + τ
ψ
⊆ B∗ τ

φ∧ψ
, or, equiv-

alently, for all I ∈ Ω, (π ∗ τ
φ∧ψ

)(I) ≤ min{π′(I), ψI +

(1 − ψI)(1 − τ)}.

PROPOSITION 1. For all φ ∈ L, the belief change operator ∗
of Definition 8 obeys postulates B∗1–B∗8.

Proof: B∗1 holds because by definition of π′ (see equation 13):
(i) if Π([φ]) > 0 then ∃I0 |= φ such that π′(I0) = 1, (π(I0) =
Π([φ])); and (ii) if Π([φ]) = 0 then ∀I |= φ, π′(I) = 1.

As for B∗2,

B′(φ) = 1 − max
I�|=φ

π′(I)

= 1 − max
I�|=φ

min{π(I), 1 − τ}
≥ 1 − (1 − τ) = τ.

To prove B∗3, we consider the three possible cases:

(i) φI = 1 and B(¬φ) = 1: π′(I) = 1 ≥ min{π(I), φI +
(1 − φI)(1 − τ)};

(ii) φI = 1 and B(¬φ) < 1: π′(I) = π(I)

Π([φ])
≥ π(I);

(iii) φI = 0: min{π(I), 1 − τ} = min{π(I), 1 − τ}.

The proof of B∗4 is similar to the one of B∗3. The only problematic
case would be when Π([φ]) = 0. However, this case is impossible
thanks to the hypothesis B(¬φ) = 0, which implies Π([φ]) = 1.

The proof of B∗5 can be done in two steps. To begin with, we
have to prove that if [φ] �= ∅ then ∃I0 ∈ Ω such that π′(I0) > 1−
τ . If Π([φ]) = 0 then π′(I) = 1, ∀I. Otherwise, if Π([φ]) > 0, it
is enough to consider the I0 which is such that π(I0) = Π([φ]).
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Secondly, we have to prove that, if [φ] = ∅, then ∀I ∈ Ω π′(I) ≤
1 − τ . Now, [φ] = ∅ means that � ∃I ∈ Ω such that I |= φ.
This means that ∀I ∈ Ω, I �|= φ and then ∀I ∈ Ω we have
π′(I) = min{π(I), 1 − τ} ≤ 1 − τ .

Let us consider that π′
ε corresponds to the resulting possibility

distribution after the acquisition of new information ε. Proving B∗6
amounts to proving that, if φ ≡ ψ, then ∀I ∈ Ω, π′

φ(I) = π′
ψ(I).

Now, φ ≡ ψ means that [φ] = [ψ] and then Π([φ]) = Π([ψ]). A
direct consequence is that π′

φ(I) = π′
ψ(I).

The proofs of B∗7 and B∗8 are rather lengthy, having to be bro-
ken up into several cases; therefore, they will be omitted due to lack
of space. �

5. DESIRES
We suppose that the agent’s subjective qualitative utilities are

determined dynamically through a rule-based deliberation mecha-
nism. Associating a qualitative utility first to worlds and not to for-
mulas allows us to (i) directly construct the possibility distribution
u; and (ii) makes it possible to also calculate the qualitative degree
of formulas which do not appear explicitly on the right-hand side
of any rule.

Like in [4], the qualitative utility associated to each positive de-
sire formula is computed on the basis of the guaranteed possibility
measure Δ.

The set of the agent’s justified positive desires, J , is induced by
the assignment of a qualitative utility u, which, unlike π, needs not
be normalized, since desires may very well be inconsistent.

DEFINITION 9 (JUSTIFIED DESIRE). Given a qualitative util-
ity assignment u (formally a possibility distribution), the degree to
which the agent desires φ ∈ L is given by

J (φ) = Δ([φ]) = min
I|=φ

u(I). (16)

In words, the degree of justification of a desire is given by the guar-
anteed qualitative utility of the set of all worlds in which the desire
would be fulfilled. Intuitively, a desire is justified to the extent that
all the worlds in which it is fulfilled are desirable.

Interpreting J (φ) as a degree of membership defines the fuzzy
set J of the agent’s justified positive desires.

In turn, a qualitative utility assignment u is univocally deter-
mined by the mental state of the agent as explained below.

DEFINITION 10 (RULE ACTIVATION). Let R = βR, ψR ⇒+

D

φ be a desire-generation rule. The degree af activation of R, Deg(R),
is given by

Deg(R) = min{B(βR),J (ψR)}.
For an unconditional rule R = αR ⇒+

D φ,

Deg(R) = αR.

REMARK 1. Here, we assume the commensurability between
belief degrees and desire degrees in order to make a direct compar-
ison possible between belief and desire degrees.

Let us denote by RI
J = {R ∈ RJ : I |= rhs(R)} the subset of

RJ containing just the rules whose right-hand side would be true
in world I.

DEFINITION 11 (DESIRED WORLDS). The qualitative utility
assignment u : Ω → [0, 1] (formally a possibility distribution) is
defined, for all I ∈ Ω, as

u(I) = max
R∈RI

J

Deg(R). (17)

At first glance, Definitions 9, 10, and 11 appear to be circular.
After all, u depends on the degree of activation of some rules,
which in turn depends on the degree of justification of some de-
sires, which in turn depends on u! However, this apparent circular-
ity may be resolved by an algorithmic translation of the two defi-
nitions which reveal u is in fact the limit distribution obtained by
iteratively applying the two definitions.

Given a mental state S = 〈π,RJ〉, the following algorithm com-
putes the corresponding qualitative utility assignment, u.

ALGORITHM 1 (DELIBERATION).

1. i ← 0; for all I ∈ Ω, u0(I) ← 0;

2. i ← i + 1;

3. For all I ∈ Ω,

ui(I) ←
�

maxR∈RI
J

Degi−1(R), if RI
J �= ∅,

0, otherwise,

where Degi−1(R) is the degree of activation of rule R cal-
culated using ui−1 as the qualitative utility assignment;

4. if maxI |ui(I) − ui−1(I)| > 0, i.e., if a fixpoint has not
been reached yet, go back to Step 2;

5. For all I ∈ Ω, u(I) ← ui(I); u is the qualitative utility
assignment corrisponding to mental state S.

Let Img(u) = {α : ∃I u(I) = α} be the image of u.

PROPOSITION 2. ‖Img(u)‖ ≤ ‖RJ‖ + 1.

Proof: We will prove the thesis by constructing a finite level set Λ
such that Img(u) ⊆ Λ.

According to Definition 11, u(I) can only take values Deg(R),
for some rule R ∈ RJ , or 0. For all unconditional rules R, let
αR ∈ Λ. For all conditional rules R of the form βR, ψR ⇒+

D φ,
in a given mental state, B(βR) = bR is constant; let bR ∈ Λ.
Of course, Deg(R) = min{bR,J (ψR)}, but, by Definition 9,
J (φ) = minI|=ψR

u(I) ∈ Λ, for min just selects one of its argu-
ment and cannot create new values.

Now, by construction, ‖Λ‖ ≤ ‖RJ‖ + 1, since 0 ∈ Λ and
there is at most one distinct αR for each unconditional rule and
one distinct bR for each conditional rule. Λ contains all values
u(I) might conceivably take up, although the actual values may be
fewer if, for some R, it turns out that J (ψR) < bR. Therefore
Img(u) ⊆ Λ and ‖Img(u)‖ ≤ ‖Λ‖ ≤ ‖RJ‖ + 1. �

PROPOSITION 3. Algorithm 1 always terminates.

Proof: First of all, we will prove, by induction, that, at each itera-
tion i > 0, for all I, ui(I) ≥ ui−1(I).

This is certainly true of i = 1, for u0(I) = 0 for all I and
u1(I) ≥ u0(I) = 0.

Now, for all iteration i > 1, we assume ui−1(I) ≥ ui−2(I) for
all I and will prove that ui(I) ≥ ui−1(I).

We need a few definitions. First of all, let us partition RJ into the
set UJ of unconditional rules and the set CJ of conditional rules.
Now, given I, let UI

J be the set of unconditional rules R such that
I |= rhs(R) and CI

J be the set of conditional rules R such that
I |= rhs(R). Let αI = max{αR : R ∈ UI

J }, αI = 0 if UI
J = ∅.

Now we can write

ui(I) = max{αI , max
R∈CI

J

min{bR, min
I′|=ψR

ui−1(I′)}}. (18)

There are two cases:
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1. ui−1(I) ≤ αI : in this case, ui(I) ≥ αI ≥ ui−1(I), and
the inductive thesis holds;

2. ui−1(I) > αI : in this case,

ui(I) = max
R∈CI

J

min{bR, min
I′|=ψR

ui−1(I′)},

and ui(I) ≥ ui−1(I) may be rewritten as

maxR∈CI
J

min{bR, minI′|=ψR
ui−1(I′)} ≥

maxR∈CI
J

min{bR, minI′|=ψR
ui−2(I′)},

which will certainly hold if, for all R ∈ RJ ,

min
I′|=ψR

ui−1(I′) ≥ min
I′|=ψR

ui−2(I′);

but this must be true, since, by the inductive hypothesis, for
all I′, ui−1(I′) ≥ ui−2(I′).

This proves that, for all i > 0 and for all I, ui(I) ≥ ui−1(I).
Now, since, by Proposition 2, Img(u) is finite, after a finite num-

ber of iterations, ui(I) = ui−1(I) for all I, and the algorithm will
terminate. �

The following example is attributed by Derek Baker [1] to John
Williams. Bob desires to date Sally, and desires to date Sue, with-
out desiring that he dates both. This may be translated into our
formalism by the following rule:

1 ⇒+
D (sue ∨ sally) ∧ ¬(sue ∧ sally).

For the sake of simplicity, let us say the set of interpretations is

Ω =

����
���

I0 = {sally �→ 0, sue �→ 0},
I1 = {sally �→ 0, sue �→ 1},
I2 = {sally �→ 1, sue �→ 0},
I3 = {sally �→ 1, sue �→ 1}

����
���

.

By applying the deliberation algorithm, the generated qualitative
utility assignment is

u(I0) = 0, u(I1) = 1, u(I2) = 1, u(I3) = 0.

From here, we can compute the degree of justification of various of
Bob’s hypothetical desires; for instance, we will discover that

J (sue) = min
I|=sue

u(I) = min{u(I1), u(I3)} = 0;

J (sally) = min
I|=sally

u(I) = min{u(I2), u(I3)} = 0;

J (sally ∧ ¬sue) = min
I|=sally∧¬sue

u(I) = u(I2) = 1;

J (sue ∧ ¬sally) = min
I|=sue∧¬sally

u(I) = u(I1) = 1.

This is a prototypical example of an inconsistent set of justfied de-
sires.

6. GOALS
Here, we make a clear distinction between desires and goals. As

pointed out in the previous sections, we suppose that desires may
be inconsistent. Goals, instead, are defined as a consistent subset
of desires.

DEFINITION 12. The overall possibility of a set S ⊆ L of for-
mulas is

Π([S]) = max
I∈[S]

π(I). (19)

The following definition extends J , the degree of justification of
a desire, to sets of desires.

DEFINITION 13. The overall qualitative utility, or justification,
of a set S ⊆ L of formulas is

J (S) = Δ([S]) = min
I∈[S]

u(I). (20)

It follows from the properties of the minumum guaranteed possi-
bility, that

J (S) = Δ([S]) = Δ

�
	


φ∈S

[φ]

�
� ≥ max

φ∈S
{Δ([φ])} = max

φ∈S
{J (φ)}.

(21)
Therefore, the addition of a desire to a set of desires can only lead

to an increase of the justification level of the resulting enlarged set
of desires.

PROPOSITION 4. Let S ⊆ L be a set of desires. For all desire
φ,

J (S ∪ {φ}) ≥ J (S); (22)

J (S) ≥ J (S \ {φ}). (23)

Proof: By Definition 4, [S ∪ {φ}] = [S] ∩ [φ]. Therefore, by the
properties of the minimum guaranteed possibility, we can write

J (S ∪ {φ}) = Δ([S] ∩ [φ]) ≥ max{Δ([S]), Δ([φ])}
≥ Δ([S]) = J (S).

The proof of Equation 23 is obtainend by replacing S with S′\{φ}
in Equation 22. �

This fits very nicely with the intuition of the man in the street
that, e.g., if Sally likes the idea of marrying a rich man and she
also like the idea of marrying a handsome man, all the more she
will like the idea of marrying a rich, handsome man. Say Sally’s
desire-generation rules are

0.7 ⇒+

D rich,

0.8 ⇒+
D handsome.

Applying these rules yields J ({rich}) = 0.7, J ({handsome}) =
0.8, and J ({rich, handsome}) = 0.8.

A rational agent will select as goals the set of desires that, be-
sides being logically “consistent”, is also maximally desirable, i.e.,
maximally justified. The problem with logical “consistency”, how-
ever, is that it does not capture “implicit” inconsistencies among
desires, that is consistency due to the agent beliefs (I adopt as goals
only desires which are not inconsistent with my beliefs). There-
fore, a suitable definition of desire consistency in the possibilistic
setting is required. Such definition must take the agent’s cognitive
state into account as pointed out, for example, in [1, 11, 25].

For example, an agent desires p and desires q, believing that p ⊃
¬q. Although {p, q}, as a set of formulas, i.e., syntactically, is
logically consistent, it is not if one take the belief p ⊃ ¬q into
account.

We argue that a suitable definition of such “cognitive” consis-
tency is one based on the possibility of the set of desires, as defined
above. Indeed, a set of desires S is consistent, in the cognitive
sense, if and only if Π([S]) > 0. Of course, cognitive consis-
tency implies logical consistency: if S is logically inconsistent,
Π([S]) = 0. We will take a step forward, by assuming a rational
agent will select as goals the most desirable set of desires among
the most possible such sets.
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Let D = {S ⊆ supp(J )}, i.e., the set of desire sets whose
justification is greater than zero.

DEFINITION 14. Given γ ∈ (0, 1],

Dγ = {S ∈ D : Π([S]) ≥ γ}
is the subset of D containing only those sets whose overall possi-
bility is at least γ.

For every given level of possibility γ, a rational agent will elect
as its goal set the maximally desirable of the γ-possible sets.

DEFINITION 15 (GOAL SET). The γ-possible goal set is

Gγ =

�
arg maxS∈Dγ J (S) if Dγ �= ∅,
∅ otherwise.

We denote by γ∗ the maximum possibility level such that Gγ �=
∅. Then, the goal set elected by a rational agent will be

G∗ = Gγ∗ , γ∗ = max
Gγ �=∅

γ. (24)

7. CONCLUSION
A theoretical framework for goal generation in BDI agent has

been justified and developed. Beliefs and desires are represented
by means of two possibility distributions. A deliberative process is
responsible for generating the distribution of qualitative utility that
underlies desire justification, and the election of goals considers
their cognitive consistency, realized as possibility.

A limit of the framework as described in this paper is that it does
not take negative preferences (which are, in a sense, the other face
of desires) into account. This limit is not inherent in any of the
choices we have made, and we plan on including an account of
negative preferences in the future.
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